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Abstract
We investigate a simple model of an overdamped Brownian particle in a
harmonic potential. The dynamics is described by a Langevin equation with a
two-valued stochastic force. The properties of the Langevin force are controlled
through a back-reaction mechanism by the particle dynamics. Our analysis
reveals two quite different dynamical regimes. The low-temperature regime
exhibits a dynamically induced ergodicity breaking. However, an arbitrarily
small periodic perturbation is capable of bringing the system back to ergodicity.

PACS numbers: 02.50.Ey, 05.10.Gg, 05.40.−a

The glass transition is an old problem which still abounds with unresolved questions. It is now
widely believed that the phenomenon is inherently dynamical, i.e. it is the full solution of the
dynamical equations that should be related to the experimental data. Several approaches have
already proved useful, the mode-coupling theory [1] being perhaps the most popular one. In
this letter, we introduce a very simple model based on the Langevin equation for a particle
under the influence of a stochastic reservoir. The properties of the stochastic force are assumed
to depend on the motion of the particle itself. We call this mechanism back-reaction.

We start with the Langevin equation for an overdamped Brownian test particle which
moves in a harmonic potential

d

dt
X(t) = −γ X(t) + Q(t). (1)

The stochastic force Q(t) is usually taken as Gaussian white noise [2,3]. Here, however, as in
[4–6], it is assumed to be dichotomic noise [7]. It jumps between just two values ±q. In [4–6],
the jumps are generated with a time-independent rate 1

2λc. As a result, the particle slides down a
parabolic potential which switches at random instants between the shapes �±(x) = 1

2γ x2∓qx.
The minima of the two parabolas are situated at x± = ±q/γ and they define an attractive region
[x−, x+] which supports the asymptotic probability density for the particle position.
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Already this simple problem is ‘less trivial than it looks’ [5]. The asymptotic probability
density develops a noise-induced transition [7] depending on the ratioλc/γ . If this ratio is larger
(smaller) than 2 [6], the function limt→∞ p(x, t) is a convex (concave) function. Nevertheless,
this constant-rate model still rests on the usual cornerstone of stochastic dynamics: the
properties of the environmental force are fixed and they cannot be back-influenced by the
test particle.

In order to incorporate into equation (1) a possible back-reaction, we use a stochastic
force Q(t) which jumps between two values ±q at random instants generated by an underlying
time-nonhomogeneous Poisson point process [8, 9]. The point process is defined by the
time-dependent intensity 1

2λ(t) (the factor 1
2 is included here for convenience). For the

moment, let this function be given. In other words, the force Q(t) is a time-nonhomogeneous
Markov process and the probabilities π±(t) = Prob{Q(t) = ±q} are dictated by the Pauli
master equation with time-dependent rates 1

2λ(t). Solving this equation, i.e. calculating the
corresponding time-ordered exponential, one achieves a complete description of the noise. For
example, the mean value κ(t) = 〈Q(t)〉 and the correlation function r(t, t ′) = 〈Q(t)Q(t ′)〉 are
controlled by the integral �(t) = ∫ t

0 dt ′λ(t ′). More explicitly,

κ(t) = qδ0 exp[−�(t)], r(t, t ′) = q2 exp[−|�(t) − �(t ′)|], (2)

where δ0 = π+(t = 0) − π−(t = 0) represents the initial condition for the noise. Notice that
the mean force κ(t) either relaxes to zero (e.g. if the function λ(t) asymptotically approaches
a positive constant) or to a non-zero constant (provided the function λ(t) relaxes sufficiently
rapidly to zero).

Now, the crucial new assumption of our model is that the rate function 1
2λ(t) depends

on the particle motion. Intuitively, the immediate mean frequency of the environmental-force
jumps should be smaller if the particle moves at a lower velocity. This reasoning leads to the
back-reaction coupling of the form

λ(t) = ε
γ

q2
〈V2(t)〉, (3)

where ε is a dimensionless control parameter and V(t) = d
dt

X(t) is the velocity. The bigger
the mean kinetic energy of the particle, the bigger the instantaneous mean frequency of the
force (i.e. the bigger the local ‘temperature’ of the environment).

In order to derive a closed set of equations, suppose again, for the moment, that the function
λ(t) is given. Performing a direct averaging in the Langevin equation (1), we express the mean
position µ(t) = 〈X(t)〉 as

µ(t) = x0 exp(−γ t) + qδ0

∫ t

0
dt ′ exp[−γ (t − t ′) − �(t)]. (4)

Here and below, we assume that all paths start at the same value X(t = 0) = x0. Similarly,
one can evaluate the second moment of the particle position and the first two moments of
the particle velocity. These moments can be conveniently expressed as combinations of the
following four auxiliary functions:

s1(t) = exp[−�(t)], (5a)

s2(t) = exp(−γ t)

∫ t

0
dt ′ exp[γ t ′ − �(t ′)], (5b)

s3(t) = exp[−γ t − �(t)]
∫ t

0
dt ′ exp[γ t ′ + �(t ′)], (5c)

s4(t) = exp(−2γ t)

∫ t

0
dt ′ exp[γ t ′ − �(t ′)]

∫ t ′

0
dt ′′ exp[γ t ′′ + �(t ′′)]. (5d)
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For example, the first moment of the position is µ(t) = x0 exp(−γ t)+qδ0s2(t) and the second
one is 〈X2(t)〉 = x2

0 exp(−2γ t) + 2x0qδ0 exp(−γ t)s2(t) + 2q2s4(t).
At this point, we employ equation (3) and we obtain the expression

1

ε

λ(t)

γ
= 1 − 2γ [s3(t) − γ s4(t)] + x̃2

0 exp(−2γ t) − 2x̃0δ0 exp(−γ t)[s1(t) − γ s2(t)], (6)

where x̃0 = x0γ /q. The functions (5a)–(5d) obey the following system of differential
equations:

d

dt
s1(t) = −λ(t)s1(t), (7a)

d

dt
s2(t) = −γ s2(t) + s1(t), (7b)

d

dt
s3(t) = 1 − [γ + λ(t)]s3(t), (7c)

d

dt
s4(t) = −2γ s4(t) + s3(t), (7d)

where the function λ(t) must be substituted from equation (6). Thus the right-hand sides
contain quadratic nonlinearities which impede further analytic investigation. However, the
numerical solution of the above system unveils a sufficiently detailed picture of the resulting
dynamics. For example, substituting back to equation (6), we obtain the function λ(t). We
now turn to the discussion of the results.

We start with the standard asymptotic analysis [10]. The system (7a)–(7d) exhibits one
bifurcation at ε = 1. This value separates two dynamical regimes with completely different
asymptotic behaviour, illustrated in figure 1.

If ε > 1 (the ergodic regime), both the mean position µ(t) and the mean velocity
ν(t) = 〈V(t)〉 relax to zero. Asymptotically, the force switching exhibits the constant positive
rate. We found limt→∞ λ(t) = γ (ε − 1), i.e. the mean force κ(t) converges to zero (all
the asymptotic values are approached exponentially). On the whole, the particle and the
environment both thermalize. For the probability density for the particle coordinate, we obtain

lim
t→∞ p(x, t) = γ

q

1

B[(ε − 1)/2, 1/2]
(1 − x̃2)(ε−3)/2
(1 − x̃2), (8)

where x̃ = xγ /q, 
(a) is the Heaviside unit-step function and B(a, b) denotes the beta
function [11]. For ε ∈]1, 3[ (for ε > 3), the asymptotic density is a convex (concave) function.
For ε = 3, it is homogeneous within its support. In all, asymptotically, our model behaves as
if the rate of switching is fixed from the very outset at the constant value 1

2λc = γ (ε − 1)/2.
If ε ∈]0, 1[ (the non-ergodic regime), the function λ(t) converges to zero, i.e. the

stochastic force gradually ceases to fluctuate. Asymptotically, the relaxation is exponential,
the rate being γ for ε ∈]0, 1

2 ] and 2γ (1 − ε) for ε ∈ [ 1
2 , 1[ (in the marginal case

ε = 1, λ(t) approaches zero as 1/t). As a result, the function �(t) converges to an ε-
dependent non-zero constant θ(ε) = ∫ ∞

0 dt λ(t), and the noise exhibits a non-zero mean value
limt→∞ κ(t) = qδ0 exp[−θ(ε)]. Notice that the time-asymptotic mean force depends on the
initial conditions. If x0 = 0, the value θ(ε) is non-zero and characterizes the model. As for
the particle, its mean position remains frozen out of the true equilibrium position. Actually,
we get limt→∞ µ(t) = qδ0ξ(ε)/γ , where ξ(ε) = exp[−θ(ε)]. The asymptotic probability
density for the particle position develops just two δ peaks at the points x±, their weights being
ρ± = [1 ± δ0ξ(ε)]/2. In a sense, the constant ξ(ε) plays the role of an order parameter. We
have numerically analysed its behaviour in the vicinity of the critical value ε = 1. If ε → 1−,
the function ξ(ε) approaches zero as (1 − ε)1/2.
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Figure 1. Time dependence of (a) the function λ(t), (b) the mean force κ(t) = 〈Q(t)〉, (c) the
mean position µ(t) = 〈X(t)〉 and (d) the mean velocity ν(t) = 〈V(t)〉. In all panels, the full
curves correspond to the control parameter ε = 0.5 (the non-ergodic regime), the broken curves to
ε = 1.0, and the chain curves to ε = 1.5 (the ergodic regime). Other parameters are γ = 1.0, and
q = 1.0, in appropriate units. The initial conditions were δ0 = 1.0 and x0 = 0.5.

Turning our attention to the stochastic properties of the resulting dynamics, we have
analysed the position correlation function c(t, tw) = 〈X(t)X(tw)〉. Starting with its t derivative
and with an appropriate initial condition at t = tw, one arrives at a differential equation with
the solution (we assume x0 = 0 and τ = t − tw � 0)

c(t, tw) = 2 exp(−γ τ)s4(tw) +
s3(tw)

s1(tw)
[s2(t) − exp(−γ τ)s2(tw)]. (9)

Thus the discussion is again reduced to that of the system (7a)–(7d). In the ergodic regime, the
position equilibrates. After a long enough waiting time tw, the correlation function depends
solely on the time difference τ = t − tw. We get

lim
tw→∞ c(tw + τ, tw) = q2

γ 2ε(2 − ε)
{exp[−γ (ε − 1)τ ] − (ε − 1) exp(−γ τ ])}. (10)

Contrary to this, in the non-ergodic regime, the limit yields the τ -independent value q2/γ 2.
After the waiting time tw, the coordinate is already frozen and thus an additional increase of
the time difference does not diminish the correlation. In other words, the Edwards–Anderson
parameter limτ→∞ limtw→∞ c(t, tw) is equal to q2/γ 2.

Finally, we have investigated the response of the particle to an external force. Adding
the additional term F0 cos(ωt) to the right-hand side of equation (1), one can repeat, mutatis
mutandis, all steps leading to the system (7a)–(7d). The right-hand side of equation (6) then
includes additional perturbation-dependent terms. Figure 2 presents a series of exact results
based on the numerical solution of the system in question.
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Figure 2. Exact response of the system to the external force F0 cos(ωt). The panels (a) and (c)
present the function λ(t) and the mean position µ(t) in the non-ergodic regime (ε = 0.5). The
panels (b) and (d) illustrate these functions in the ergodic regime (ε = 1.5). Other parameters
are γ = 1.0, q = 1.0, F0 = 0.6 and ω = 2.0, in appropriate units. The initial conditions were
δ0 = 1.0 and x0 = 0.0.

Focusing on the stationary regime, our calculation reveals two interesting points. First,
for any ε > 0, the mean position µ(t) oscillates around zero. The exact response is
linear in the amplitude of the external force, the dynamical susceptibility being simply
χ(t − t ′) = 
(t − t ′) exp[−γ (t − t ′)].

Second, the function λ(t) behaves as λ(t) = A0 +
∑∞

k=1 Ak sin(2kωt +φk), i.e. it oscillates
with the doubled frequency around a level A0. The quantities A0, Ak , φk , k = 1, 2, . . ., are
complicated functions of the external frequency ω and they are nonlinear functions of the
amplitude F0. Both observations can be easily understood. The external force drags the
particle back and forth. Once moving, the particle induces through (3) the oscillations of
the stochastic force. Once the force fluctuates, the two potential parabolas alternate and the
particle can exploit the full set of accessible trajectories.

In conclusion, the coupling between particle motion and the stochastic force leads to a
dynamical freezing in the non-ergodic regime. However, an arbitrarily small external periodic
perturbation stimulates a ‘melting’ of the frozen state and the asymptotic response of the system
looks like that in the ergodic regime. As a final remark, one can consider also other functional
forms of the back-reaction mechanism. For example, our choice (3) can be generalized as
λ(t) = 〈F [V2(t)]〉. We expect that our formalism would work provided F(x) is an analytic
function of its argument.
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